WELCOME

Continuity and Uniform continuity using Epsilon - Delta Property

J.Maria Joseph PhD

Assistant Professor, P.G. and Research Department of Mathematics, St.Joseph's College (Autonomous), Tiruchirappalli - 620 002, India.

St.Joseph's College, Trichy

Outline

(1) Motivation
(2) Sequence
(3) Convergence
4. continuous function
(5) Uniform Continuous

Introduction to Sets

Lo What is set?

Introduction to Sets

(0) What is set?

LD Is it merely collection of objects or "things".?

Introduction to Sets

For Example
The items you wear: shoes, socks, hat, shirt, pants, and so on.

Introduction to Sets

For Example
The items you wear: shoes, socks, hat, shirt, pants, and so on. I'm sure you could come up with at least a hundred.

Introduction to Sets

For Example
The items you wear: shoes, socks, hat, shirt, pants, and so on. I'm sure you could come up with at least a hundred. This is known as a set.

Introduction to Sets

For Example
The items you wear: shoes, socks, hat, shirt, pants, and so on. I'm sure you could come up with at least a hundred.

$\left\{\begin{array}{l}10 \\ n\end{array}\right\}$

 This is known as a set.
Introduction to Sets

For Example
Types of fingers.

Introduction to Sets

For Example
Types of fingers. This set includes index, middle, ring, and pinky.

Introduction to Sets

For Example
Types of fingers. This set includes index, middle, ring, and pinky.

Introduction to Sets

For Example
Types of fingers. This set includes index, middle, ring, and pinky.

So it is just things grouped together with a certain property in common.

Introduction to Sets

What is set?
Well, simply put, it's a collection.

Introduction to Sets

What is set?
Well, simply put, it's a collection.
Definition
A set is a collection of well defined objects or things.

Introduction to Sets

Notations
Sets are generally denoted by capital letters A, B, C, \cdots etc.,

Introduction to Sets

Notations
Sets are generally denoted by capital letters A, B, C, \cdots etc.,
Elements of the sets are denoted by the small letters a, b, c, d, e, f, \cdots etc.,

Introduction to Sets

Notations
Sets are generally denoted by capital letters A, B, C, \cdots etc.,
Elements of the sets are denoted by the small letters a, b, c, d, e, f, \cdots etc.,
Is x is an element of the set S, then it is written as $x \in S$ and read as x belongs to S.

Introduction to Sets

Notations

Sets are generally denoted by capital letters A, B, C, \cdots etc.,
Elements of the sets are denoted by the small letters a, b, c, d, e, f, \cdots etc.,
Is x is an element of the set S, then it is written as $x \in S$ and read as x belongs to S.
T If x is a not the member of the set S, then it is written as $x \notin S$ and read as x does not belong to S.

Introduction to Sets

Example

Consider the set $V=\{a, e, i, o, u\}$
$a \in V, i \in V$ but $b \notin V$

Introduction to Sets

Example

Consider the set $V=\{a, e, i, o, u\}$
$a \in V, i \in V$ but $b \notin V$
V is the set of vowels in alphabet.

Introduction to Sets

Example
Consider the set $V=\{a, e, i, o, u\}$
$a \in V, i \in V$ but $b \notin V$
V is the set of vowels in alphabet.
Is it ?
Girls are brilliant.

Introduction to Sets

Example

Consider the set $V=\{a, e, i, o, u\}$
$a \in V, i \in V$ but $b \notin V$
V is the set of vowels in alphabet.
Is it ?
Girls are brilliant.
Is it a set?

Introduction to Sets

Example

Consider the set $V=\{a, e, i, o, u\}$
$a \in V, i \in V$ but $b \notin V$
V is the set of vowels in alphabet.
Is it ?
Girls are brilliant.
Is it a set?
No, because here brilliant is not defined.

Sets

$\mathbb{N}-\quad$ Natural Numbers $\{1,2,3,4, \cdots\}$

Sets

\mathbb{N} - Natural Numbers $\{1,2,3,4, \cdots\}$
$\mathbb{Z} \quad$ - Set of Integers $\{0, \pm 1, \pm 2, \pm 3, \pm 4, \cdots\}$

Sets

\mathbb{N} - Natural Numbers $\{1,2,3,4, \cdots\}$
\mathbb{Z} - Set of Integers $\{0, \pm 1, \pm 2, \pm 3, \pm 4, \cdots\}$ \mathbb{Q} - Set of Rational Numbers $\left\{\frac{p}{q}, q \neq 0\right\}$

Sets

\mathbb{N} - Natural Numbers $\{1,2,3,4, \cdots\}$
\mathbb{Z} - Set of Integers $\{0, \pm 1, \pm 2, \pm 3, \pm 4, \cdots\}$
\mathbb{Q} - Set of Rational Numbers $\left\{\frac{p}{q}, q \neq 0\right\}$
\mathbb{R} - Set of Real Numbers $(-\infty, \infty)$

Graphical View

Graphical View

\mathbb{N}

Graphical View

\mathbb{N}
\mathbb{N}

Graphical View

Graphical View

$\mathbb{N} \subset \mathbb{Z}$

Graphical View

$\mathbb{N} \subset \mathbb{Z}$
\mathbb{Q}

Graphical View

$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$

Graphical View

$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \quad \mathbb{R}$

Graphical View

$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$

Function

\&f Function - Relation between two non-empty sets.

Function

8: Function - Relation between two non-empty sets.
$\%$ Let A and B be two non-empty sets. A function or mapping f from A into B is a rule which assigns each element $a \in A$ a unique element $b \in B$.

Function

8: Function - Relation between two non-empty sets.
8 Let A and B be two non-empty sets. A function or mapping f from A into B is a rule which assigns each element $a \in A$ a unique element $b \in B$.
8. In mathematically written as $f: A \rightarrow B$ defined by $f(a)=b$ for all $a \in A$.

* Consider the function $f: A \rightarrow B$ by $f(a)=b$

* Consider the function $f: A \rightarrow B$ by $f(a)=b$

* Consider the function $f: A \rightarrow B$ by $f(a)=b$

* Consider the function $f: A \rightarrow B$ by $f(a)=b$

* Consider the function $f: A \rightarrow B$ by $f(a)=b$

* Consider the function $f: A \rightarrow B$ by $f(a)=b$

* Consider the function $f: A \rightarrow B$ by $f(a)=b$
* A is called the domain of f

* Consider the function $f: A \rightarrow B$ by $f(a)=b$
* A is called the domain of f
* B is called the co-domain of f

* Consider the function $f: A \rightarrow B$ by $f(a)=b$
* A is called the domain of f
* B is called the co-domain of f
* The element $b \in B$ is called the image of a under f.

* Consider the function $f: A \rightarrow B$ by $f(a)=b$
* A is called the domain of f
* B is called the co-domain of f
* The element $b \in B$ is called the image of a under f.
* The element $a \in A$ is called the pre-image of b under f.

Graphical

Graphical

Graphical

Graphical

Graphical

Graphical

Graphical

Graphical

Graphical

Graphical

Is it function?

Graphical

Is it function?
 Yes

Graphical

Is it function?

Graphical

Is it function?
No

Graphical

Is it function ? If it is, what type is it?

Graphical

Is it function ? If it is, what type is it?
One - to - one (or) Injective

Graphical

Is it function ? If it is, what type is it?

Graphical

Is it function? If it is, what type is it?
Onto (or) Surjective

Graphical

Constant Function
$f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(x)=3$ is called a constant function. The range of f is 3 .

Introducing Sequence

In maths, we call a list of numbers in order a sequence.

Introducing Sequence

㖪 In maths, we call a list of numbers in order a sequence.

Introducing Sequence
吗 In maths，we call a list of numbers in order a sequence．
鲒 Each number in a sequence is called a term．
喂 If terms are next to each other they are referred to as consecutive terms．

Introducing Sequence
㖪 In maths，we call a list of numbers in order a sequence．
榢 Each number in a sequence is called a term．
嗗 If terms are next to each other they are referred to as consecutive terms．
唯 When we write out sequences，consecutive terms are usually separated by commas．

Example
 Consider the following collection of real numbers given by

$$
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots
$$

Example

Consider the following collection of real numbers given by

$$
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots
$$

Graphical

Example

Consider the following collection of real numbers given by

$$
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots
$$

Graphical

Example

Consider the following collection of real numbers given by

$$
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots
$$

Graphical

Example

Consider the following collection of real numbers given by

$$
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots
$$

Graphical

Example

Consider the following collection of real numbers given by

$$
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots
$$

Graphical

Example

Consider the following collection of real numbers given by

$$
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots
$$

Graphical

Example

Consider the following collection of real numbers given by

$$
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots
$$

Graphical

This is an example of sequence of real numbers.

Sequence is a function whose domain is the set of natural numbers.

Sequence is a function whose domain is the set of natural numbers.

Definition
Let $f: \mathbb{N} \rightarrow \mathbb{R}$ be a function and $f(n)=a_{n}$. Then $a_{1}, a_{2}, a_{3}, \cdots, a_{n}, \cdots$, is called the sequence in \mathbb{R} determined by the function f and is denoted by $\left\{a_{n}\right\}, a_{n}$ is called the $n^{\text {th }}$ term of the sequence.

Convergence of a Sequence
We say that a sequence $\left(x_{n}\right)$ converges if there exists $x_{0} \in \mathbb{R}$ such that for every $\epsilon>0$, there exists a positive integer N (depending on ϵ) such that $x_{n} \in\left(x_{0}-\epsilon, x_{0}+\epsilon\right)$ for all $n \geq N$.

Definition
Let $\left\{a_{n}\right\}$ be a sequence of real numbers.

Definition
Let $\left\{a_{n}\right\}$ be a sequence of real numbers. $\left\{a_{n}\right\} \rightarrow$ I

Definition
Let $\left\{a_{n}\right\}$ be a sequence of real numbers. $\left\{a_{n}\right\} \rightarrow /$ iff given $\epsilon>0$

Definition
Let $\left\{a_{n}\right\}$ be a sequence of real numbers. $\left\{a_{n}\right\} \rightarrow /$ iff given $\epsilon>0$

Definition

Let $\left\{a_{n}\right\}$ be a sequence of real numbers. $\left\{a_{n}\right\} \rightarrow 1$ iff given $\epsilon>0$ there exists a natural number N

Definition

Let $\left\{a_{n}\right\}$ be a sequence of real numbers. $\left\{a_{n}\right\} \rightarrow 1$ iff given $\epsilon>0$ there exists a natural number N such that $a_{n} \in(I-\epsilon, I+\epsilon)$

Definition

Let $\left\{a_{n}\right\}$ be a sequence of real numbers. $\left\{a_{n}\right\} \rightarrow$ I iff given $\epsilon>0$ there exists a natural number N such that $a_{n} \in(I-\epsilon, I+\epsilon)$ for all $n \geq N$.

Definition

Let $\left\{a_{n}\right\}$ be a sequence of real numbers. $\left\{a_{n}\right\} \rightarrow$ I iff given $\epsilon>0$ there exists a natural number N such that $a_{n} \in(I-\epsilon, I+\epsilon)$ for all $n \geq N$.

Definition

Let $\left\{a_{n}\right\}$ be a sequence of real numbers. $\left\{a_{n}\right\} \rightarrow$ I iff given $\epsilon>0$ there exists a natural number N such that $a_{n} \in(I-\epsilon, I+\epsilon)$ for all $n \geq N$.

Definition

Let $\left\{a_{n}\right\}$ be a sequence of real numbers. $\left\{a_{n}\right\} \rightarrow$ I iff given $\epsilon>0$ there exists a natural number N such that $a_{n} \in(I-\epsilon, I+\epsilon)$ for all $n \geq N$.

Definition

Let $\left\{a_{n}\right\}$ be a sequence of real numbers. $\left\{a_{n}\right\} \rightarrow$ I iff given $\epsilon>0$ there exists a natural number N such that $a_{n} \in(I-\epsilon, I+\epsilon)$ for all $n \geq N$.

Definition

Let $\left\{a_{n}\right\}$ be a sequence of real numbers. $\left\{a_{n}\right\} \rightarrow$ I iff given $\epsilon>0$ there exists a natural number N such that $a_{n} \in(I-\epsilon, I+\epsilon)$ for all $n \geq N$.

Definition

Let $\left\{a_{n}\right\}$ be a sequence of real numbers. $\left\{a_{n}\right\} \rightarrow$ I iff given $\epsilon>0$ there exists a natural number N such that $a_{n} \in(I-\epsilon, I+\epsilon)$ for all $n \geq N$.

Definition

Let $\left\{a_{n}\right\}$ be a sequence of real numbers. $\left\{a_{n}\right\} \rightarrow 1$ iff given $\epsilon>0$ there exists a natural number N such that $a_{n} \in(I-\epsilon, I+\epsilon)$ for all $n \geq N$.

Definition

Let $\left\{a_{n}\right\}$ be a sequence of real numbers. $\left\{a_{n}\right\} \rightarrow$ I iff given $\epsilon>0$ there exists a natural number N such that $a_{n} \in(I-\epsilon, I+\epsilon)$ for all $n \geq N$.

Graphical View

For any $\epsilon>0$,

Graphical View

For any $\epsilon>0$,

Graphical View

For any $\epsilon>0, \exists$ a positive integer N

Graphical View

For any $\epsilon>0, \exists$ a positive integer N such that $\left|a_{n}-L\right| \leq \epsilon$ for all $n>m$.

Graphical View

For any $\epsilon>0, \exists$ a positive integer N such that $\left|a_{n}-L\right| \leq \epsilon$ for all $n>m$.

Graphical View

For any $\epsilon>0, \exists$ a positive integer N such that $\left|a_{n}-L\right| \leq \epsilon$ for all $n>m$.

Graphical View

For any $\epsilon>0, \exists$ a positive integer N such that $\left|a_{n}-L\right| \leq \epsilon$ for all $n>m$.

Graphical View

For any $\epsilon>0, \exists$ a positive integer N such that $\left|a_{n}-L\right| \leq \epsilon$ for all $n>m$.

Properties of sequence

 1. A sequence cannot converge to two different limits.Properties of sequence

1. A sequence cannot converge to two different limits.
2. A sequence converges to real number A and B then $A=B$.

Properties of sequence

1. A sequence cannot converge to two different limits.
2. A sequence converges to real number A and B then $A=B$.
3. Any convergent sequence is a bounded sequence.

Properties of sequence

1. A sequence cannot converge to two different limits.
2. A sequence converges to real number A and B then $A=B$.
3. Any convergent sequence is a bounded sequence. Converse is not true.

Properties of sequence

1. A sequence cannot converge to two different limits.
2. A sequence converges to real number A and B then $A=B$.
3. Any convergent sequence is a bounded sequence. Converse is not true. Example : $\left\{(-1)^{n}\right\}$ is a bounded sequence but not a convergent sequence.

Properties of sequence

1. A sequence cannot converge to two different limits.
2. A sequence converges to real number A and B then $A=B$.
3. Any convergent sequence is a bounded sequence. Converse is not true. Example : $\left\{(-1)^{n}\right\}$ is a bounded sequence but not a convergent sequence.
4. Any convergent sequence is bounded.

Concept

Continuous functions are functions that take nearby values at nearby points.

Origin
The term continuous has been used since the time of Newton to refer to the motion of bodies or to describe an unbroken curve

Origin
The term continuous has been used since the time of Newton to refer to the motion of bodies or to describe an unbroken curve

- It was made precise until the Nineteenth century.

Origin
The term continuous has been used since the time of Newton to refer to the motion of bodies or to describe an unbroken curve
It was made precise until the Nineteenth century.
Work of Bernard Bolzano in 1817 and Cauchy 1821 identified continuity as a very significant property of function

Origin
The term continuous has been used since the time of Newton to refer to the motion of bodies or to describe an unbroken curve
It was made precise until the Nineteenth century.
Work of Bernard Bolzano in 1817 and Cauchy 1821 identified continuity as a very significant property of function
σ The concept is tied to that of limit, it was the careful work of Weierstrassin the 1870s that brought proper understanding to the idea of continuity.

Continuous function
Let $f: A \longrightarrow R$, where $A \subset R$, and suppose that $c \in A$. Then f is continuous at c if for every $\varepsilon>0$ there exists a $\delta>0$ such that $|x-c|<\delta$ and $x \in A$ implies that $|f(x)-f(c)|<\varepsilon$.

Graph

Note

A function $f: A \longrightarrow R$ is continuous on a set $B \subset A$ if it is continuous at every point in B, and continuous if it is continuous at every point of its domain.

Steps

1. Take $|f(x)-f(c)|<\varepsilon$ and rewrite it to match $|x-c|<\delta$ to create a direct relationship

Steps

1. Take $|f(x)-f(c)|<\varepsilon$ and rewrite it to match $|x-c|<\delta$ to create a direct relationship
2. Let $|x-c|<\delta$ and prove $|f(x)-f(c)|<\varepsilon$

Continuous function
 The function $\sin x: R \longrightarrow R$ is continuous on R.

Sinx curve

Continuous function

Choose $\delta=\varepsilon$ in the definition of continuity for every $c \in R$

Continuous function

The function $f: R \longrightarrow R$ defined by $f(x)=\sin (1 / x)$, if $x \neq 0, f(x)=0$, if $x=0$ is continuous on $R-0$, since it is the composition of $x \mapsto 1 / x$, which is continuous on $R-0$ and $y \mapsto$ siny, which is continuous on R.

$\operatorname{Sin}\left(\frac{1}{x}\right)$ curve

Continuous function
The function $f: R \longrightarrow R$ defined by
$f(x)=x \sin (1 / x), i f x \neq 0, f(x)=0$, $i f x=0$. Then f is continuous at 0 .

$x \operatorname{Sin}\left(\frac{1}{x}\right)$ curve

Continuous function
The function $f: R \longrightarrow R$ defined by
$f(x)=x \sin (1 / x), i f x \neq 0, f(x)=0$, $i f x=0$. Then f is continuous on $R 0$

Continuous function
The function $f: R \longrightarrow R$ defined by
$f(x)=x^{2} \sin (1 / x), i f x \neq 0, f(x)=0, i f x=0$. Then f is continuous at 0 .

$$
x^{2} \operatorname{Sin}\left(\frac{1}{x}\right) \text { curve }
$$

Continuous function

The function $f:[0, \infty) \longrightarrow R$ defined by $f(x)=\sqrt{x}$ is continuous on $[0, \infty)$. (i) Prove that f is continuous at c >0, we can choose $\delta=\sqrt{c} \varepsilon>0$
(ii) Prove that f is continuous at 0 , we note that if $0 \leq x<\delta$ where $\delta=\varepsilon^{2}>0$,

$$
f(x)=\sqrt{x} \text { curve }
$$

Continuous function
 The function $f(x)=x^{2}+1$ is continuous at $x=2$

$$
x^{2} \text { curve }
$$

Uniform Continuous function

Let $f: A \longrightarrow R$, where $A \subset R$. Then f is uniformly continuous on A if for every $\varepsilon>0$ there exists a $\delta>0$ such that $|x-y|<$ and $x, y \in A$ implies that $|f(x)-f(y)|<\varepsilon$.

Remarks

The key point of this definition is that δ depends only on ε, not on x, y.

Remarks

The key point of this definition is that δ depends only on ε, not on x, y.
A uniformly continuous function on A is continuous at every point of A, but the converse is not true.

Remarks

The key point of this definition is that δ depends only on ε, not on x, y.
A uniformly continuous function on A is continuous at every point of A, but the converse is not true.

Continuous function
The sine function is uniformly continuous on R , since we can take $\delta=\varepsilon$ for every $x, y \in R$.

Continuous function

Define $f:[0,1] \longrightarrow R$ by $f(x)=x^{2}$. Then f is uniformly continuous on $[0,1]$.

$$
x^{2} \text { curve }
$$

Continuous function but not uniform

The function $f(x)=x^{2}$ is continuous but not uniformly continuous on R .

Continuous function
The function $f:(0,1] \longrightarrow R$ defined by $f(x)=\frac{1}{x}$ is continuous but not uniformly continuous on $(0,1]$.

$$
\left(\frac{1}{x}\right) \text { curve }
$$

Continuous function but not uniform
Define $f:(0,1] \longrightarrow R$ by $f(x)=\sin \left(\frac{1}{x}\right)$
Then f is continuous on $(0,1]$ but it is not uniformly continuous on $(0,1]$.

\dddot{c} Time to Interact

