WELCOME

Convergent Sequence : A Geometrical Approach

J.Maria Joseph PhD

Assistant Professor,
P.G. and Research Department of Mathematics,
St.Joseph's College (Autonomous),
Tiruchirappalli - 620 002, India.

St. Joseph's College, Trichy

Outline

- Motivation
- Sequence
- Convergence
- Bounded Sequence
- Monotonic Sequences

Forget everything you know about numbers.

- Forget everything you know about numbers.
- In fact, forget you even know what a number is.

- Forget everything you know about numbers.
- In fact, forget you even know what a number is.
- This is where mathematics starts.

- Forget everything you know about numbers.
- In fact, forget you even know what a number is.
- This is where mathematics starts.
- Instead of math with numbers, we will now think about math with "things".

For Example

The items you wear: shoes, socks, hat, shirt, pants, and so on.

For Example

The items you wear: shoes, socks, hat, shirt, pants, and so on. I'm sure you could come up with at least a hundred.

For Example

The items you wear: shoes, socks, hat, shirt, pants, and so on. I'm sure you could come up with at least a hundred. This is known as a **set**.

For Example

The items you wear: shoes, socks, hat, shirt, pants, and so on. I'm sure you could come up with at least a hundred. This is known as a **set**.

For Example

Types of fingers.

For Example

Types of fingers. This set includes index, middle, ring, and pinky.

For Example

Types of fingers. This set includes index, middle, ring, and pinky.

For Example

Types of fingers. This set includes index, middle, ring, and pinky.

So it is just things grouped together with a certain property in common.

What is set?

Well, simply put, it's a collection.

What is set?

Well, simply put, it's a collection.

Definition

A set is a collection of well defined objects or things.

Notations

Sets are generally denoted by capital letters A, B, C, \cdots etc.,

Notations

- Sets are generally denoted by capital letters A, B, C, \cdots etc.,
- Elements of the sets are denoted by the small letters a, b, c, d, e, f, \cdots etc.

Notations

- Sets are generally denoted by capital letters A, B, C, \cdots etc.,
- Elements of the sets are denoted by the small letters a, b, c, d, e, f, \cdots etc.,
- Is x is an element of the set S, then it is written as $x \in S$ and read as x belongs to S.

Notations

- Sets are generally denoted by capital letters A, B, C, \cdots etc.,
- Elements of the sets are denoted by the small letters a, b, c, d, e, f, \cdots etc.,
- Is x is an element of the set S, then it is written as $x \in S$ and read as x belongs to S.
- If x is a not the member of the set S, then it is written as $x \notin S$ and read as x does not belong to S.

Example

Consider the set $V = \{a, e, i, o, u\}$ $a \in V$, $i \in V$ but $b \notin V$

Example

```
Consider the set V = \{a, e, i, o, u\}
 a \in V, i \in V but b \notin V
 V is the set of vowels in alphabet.
```

Example

```
Consider the set V = \{a, e, i, o, u\}
 a \in V, i \in V but b \notin V
 V is the set of vowels in alphabet.
```

Is it?

Girls are brilliant.

Example

```
Consider the set V = \{a, e, i, o, u\}
 a \in V, i \in V but b \notin V
 V is the set of vowels in alphabet.
```

Is it?

Girls are brilliant.

Is it a set?

Example

```
Consider the set V = \{a, e, i, o, u\}
 a \in V, i \in V but b \notin V
 V is the set of vowels in alphabet.
```

Is it?

Girls are brilliant.

Is it a set?

No, because here brilliant is not defined.

 \mathbb{N} - Natural Numbers $(1, 2, 3, 4, \cdots)$

 \mathbb{N} - Natural Numbers $(1, 2, 3, 4, \cdots)$ \mathbb{Z} - Set of Integers $(0, \pm 1, \pm 2, \pm 3, \pm 4, \cdots)$

- \mathbb{N} Natural Numbers $(1, 2, 3, 4, \cdots)$
- \mathbb{Z} Set of Integers $(0,\pm 1,\pm 2,\pm 3,\pm 4,\cdots)$
- \mathbb{Q} Set of Rational Numbers $(\frac{p}{q},\ q \neq 0)$

- \mathbb{N} Natural Numbers $(1, 2, 3, 4, \cdots)$
- \mathbb{Z} Set of Integers $(0,\pm 1,\pm 2,\pm 3,\pm 4,\cdots)$
- \mathbb{Q} Set of Rational Numbers $(\frac{p}{q}, q \neq 0)$
- \mathbb{R} Set of Real Numbers

 \mathbb{N}

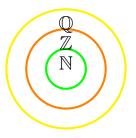
 \mathbb{N}

 \mathbb{N} \mathbb{Z}

 $\mathbb{N} \subset \mathbb{Z}$

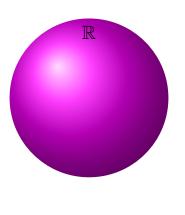
 $\mathbb{N} \subset \mathbb{Z} \mathbb{Q}$

Graphical View



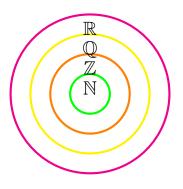
 $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$

Graphical View



 $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \mathbb{R}$

Graphical View



 $\mathbb{N} \ \subset \ \mathbb{Z} \ \subset \ \mathbb{Q} \ \subset \ \mathbb{R}$

Function

Function - Relation between two non-empty sets.

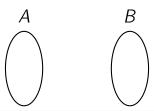
Function

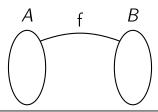
Function - Relation between two non-empty sets.

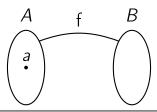
Let A and B be two non-empty sets. A function or mapping f from A into B is a rule which assigns each element $a \in A$ a unique element $b \in B$.

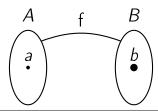
Function

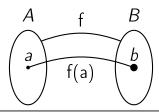
- Function Relation between two non-empty sets.
- Let A and B be two non-empty sets. A function or mapping f from A into B is a rule which assigns each element $a \in A$ a unique element $b \in B$.
- In mathematically written as $f: A \to B$ defined by f(a) = b for all $a \in A$.

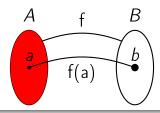


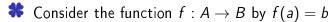




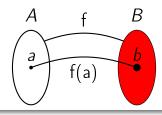




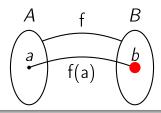




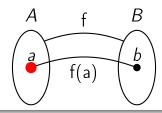
A is called the domain of f



- ***** Consider the function $f: A \rightarrow B$ by f(a) = b
- * A is called the domain of f
- * B is called the co-domain of f



- ***** Consider the function $f: A \rightarrow B$ by f(a) = b
- * A is called the domain of f
- **B** is called the co-domain of *f*
- \clubsuit The element $b \in B$ is called the image of a under f.



- ***** Consider the function $f: A \rightarrow B$ by f(a) = b
- * A is called the domain of f
- R B is called the co-domain of f
- $\red{*}$ The element $b \in B$ is called the image of a under f.
- $\red{*}$ The element $a \in A$ is called the pre-image of b under f.

Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$.

Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$.

Any positive real number x has two pre-images under f given by \sqrt{x} and $-\sqrt{x}$.

Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$.

Any positive real number x has two pre-images under f given by \sqrt{x} and $-\sqrt{x}$.

Example 9 has two pre-images which are 3 and -3.

Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$.

Any positive real number x has two pre-images under f given by \sqrt{x} and $-\sqrt{x}$.

Example 9 has two pre-images which are 3 and -3.

Any negative real number x does not have a pre-image under f

Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$.

Any positive real number x has two pre-images under f given by \sqrt{x} and $-\sqrt{x}$.

Example 9 has two pre-images which are 3 and -3.

Any negative real number x does not have a pre-image under f

Example -9 has no pre-image under f

Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$.

Any positive real number x has two pre-images under f given by \sqrt{x} and $-\sqrt{x}$.

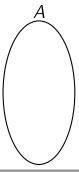
Example 9 has two pre-images which are 3 and -3.

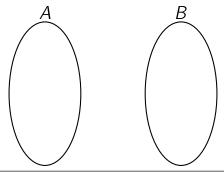
Any negative real number x does not have a pre-image under f

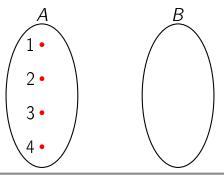
Example -9 has no pre-image under f

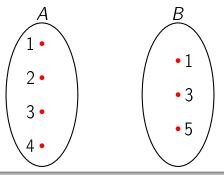
So range set of this function is $\mathbb{R}^+ \cup \{0\}$.

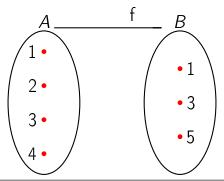
${\sf Graphical}$

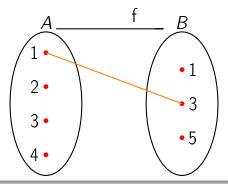


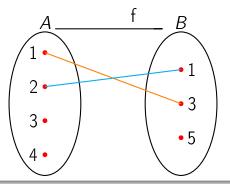


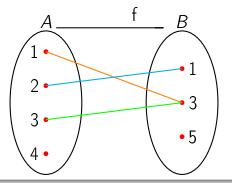




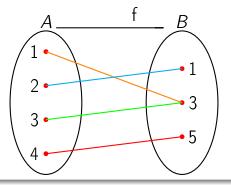


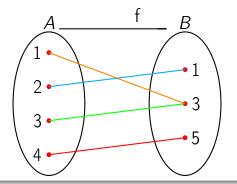




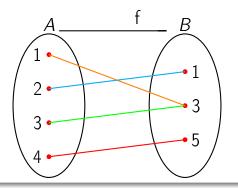


${\sf Graphical}$



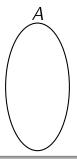


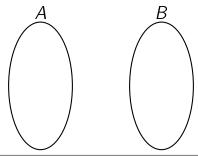
Is it function?

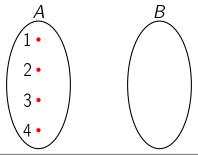


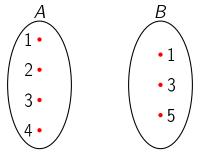
Is it function?

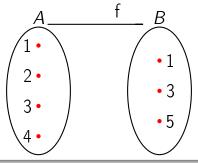
Yes

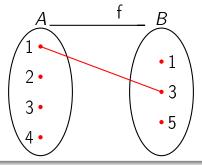


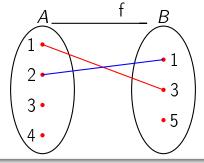


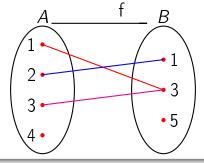


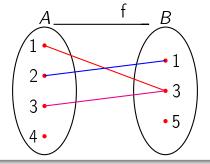




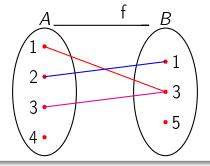






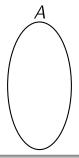


Is it function?

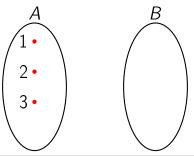


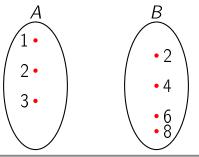
Is it function?

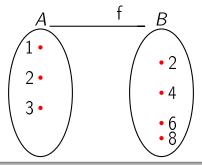
No

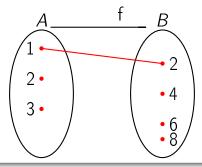


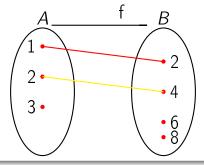


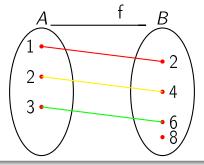


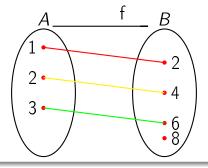




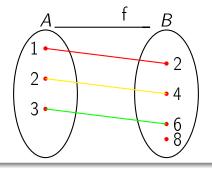






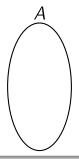


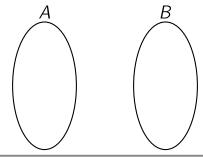
Is it function? If it is, what type is it?

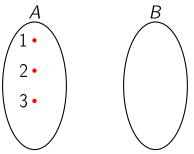


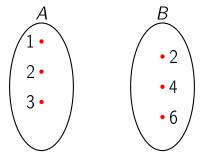
Is it function? If it is, what type is it?

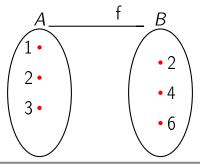
One - to - one (or) Injective

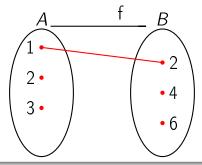


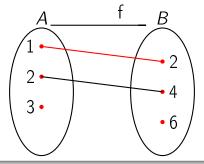


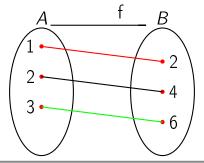


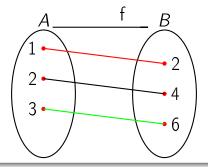




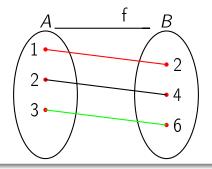






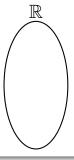


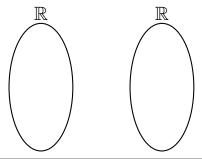
Is it function? If it is, what type is it?



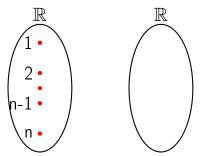
Is it function? If it is, what type is it? Onto (or) Surjective

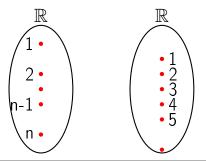
${\sf Graphical}$

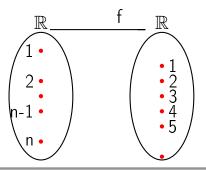


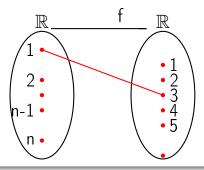


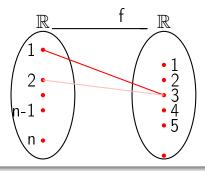
${\sf Graphical}$

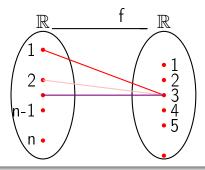


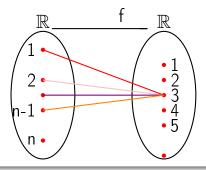


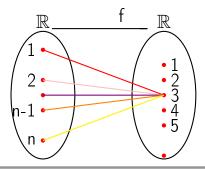




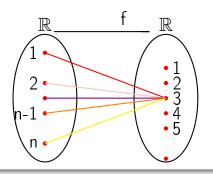








Graphical



Constant Function

 $f: \mathbb{N} \to \mathbb{N}$ defined by f(x) = 3 is called a constant function. The range of f is 3.

In maths, we call a list of numbers in order a sequence.

- In maths, we call a list of numbers in order a sequence.
- Each number in a sequence is called a term.

- In maths, we call a list of numbers in order a sequence.
- Each number in a sequence is called a term.
- If terms are next to each other they are referred to as consecutive terms.

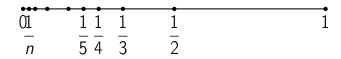
- In maths, we call a list of numbers in order a sequence.
- Each number in a sequence is called a term.
- If terms are next to each other they are referred to as consecutive terms.
- When we write out sequences, consecutive terms are usually separated by commas.

Consider the following collection of real numbers given by

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots$$

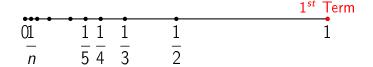
Consider the following collection of real numbers given by

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots$$



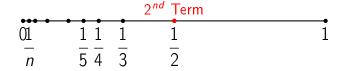
Consider the following collection of real numbers given by

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots$$



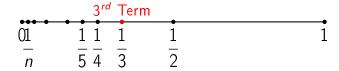
Consider the following collection of real numbers given by

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots$$



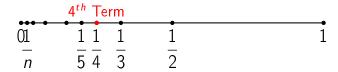
Consider the following collection of real numbers given by

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots$$



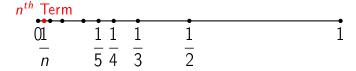
Consider the following collection of real numbers given by

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots$$



Consider the following collection of real numbers given by

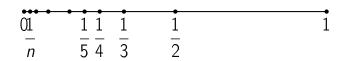
$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots$$



Consider the following collection of real numbers given by

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots$$

Graphical



This is an example of sequence of real numbers.

Sequence is a function whose domain is the set of natural numbers.

Sequence is a function whose domain is the set of natural numbers.

Definition

Let $f: \mathbb{N} \to \mathbb{R}$ be a function and $f(n) = a_n$. Then $a_1, a_2, a_3, \cdots, a_n, \cdots$, is called the sequence in \mathbb{R} determined by the function f and is denoted by $\{a_n\}$, a_n is called the n^{th} term of the sequence.

A sequence can be infinite. That means it continues forever.

A sequence can be infinite. That means it continues forever.

For example, the function $f: \mathbb{N} \to \mathbb{N}$ by f(n) = 10n determines the infinite sequence.

A sequence can be infinite. That means it continues forever.

For example, the function $f: \mathbb{N} \to \mathbb{N}$ by f(n) = 10n determines the infinite sequence.

 $10, 20, 30, 40, 50, 60, \cdots$

A sequence can be infinite. That means it continues forever.

For example, the function $f: \mathbb{N} \to \mathbb{N}$ by f(n) = 10n determines the infinite sequence.

$$10, 20, 30, 40, 50, 60, \cdots$$

If a sequence has a fixed number of terms it is called a finite sequence.

A sequence can be infinite. That means it continues forever.

For example, the function $f: \mathbb{N} \to \mathbb{N}$ by f(n) = 10n determines the infinite sequence.

$$10, 20, 30, 40, 50, 60, \cdots$$

If a sequence has a fixed number of terms it is called a finite sequence.

For example, the function $f : \mathbb{N} \to \mathbb{R}$ by $f(n) = (-1)^n$, determines the finite sequence.

A sequence can be infinite. That means it continues forever.

For example, the function $f: \mathbb{N} \to \mathbb{N}$ by f(n) = 10n determines the infinite sequence.

$$10, 20, 30, 40, 50, 60, \cdots$$

If a sequence has a fixed number of terms it is called a finite sequence.

For example, the function $f : \mathbb{N} \to \mathbb{R}$ by $f(n) = (-1)^n$, determines the finite sequence.

-1, 1

The function $f: \mathbb{N} \to \mathbb{R}$ given by $f(n) = n^2$.

- The function $f: \mathbb{N} \to \mathbb{R}$ given by $f(n) = n^2$.
- The function $f: \mathbb{N} \to \mathbb{R}$ given by $f(n) = \frac{1}{n}$.

- lacktriangle The function $f: \mathbb{N} \to \mathbb{R}$ given by $f(n) = n^2$.
- The function $f: \mathbb{N} \to \mathbb{R}$ given by $f(n) = \frac{1}{n}$.
- The function $f: \mathbb{N} \to \mathbb{R}$ given by $f(n) = x^{n-1}$.

- lacktriangle The function $f: \mathbb{N} \to \mathbb{R}$ given by $f(n) = n^2$.
- The function $f: \mathbb{N} \to \mathbb{R}$ given by $f(n) = \frac{1}{n}$.
- The function $f: \mathbb{N} \to \mathbb{R}$ given by $f(n) = x^{n-1}$. (Geometric Sequence)

- lacktriangle The function $f: \mathbb{N} \to \mathbb{R}$ given by $f(n) = n^2$.
- The function $f: \mathbb{N} \to \mathbb{R}$ given by $f(n) = \frac{1}{n}$.
- The function $f: \mathbb{N} \to \mathbb{R}$ given by $f(n) = x^{n-1}$. (Geometric Sequence)

Before giving the formal definition of convergence of a sequence, let us take a look at the behaviour of the sequences in the above examples.

The elements of the sequence $\frac{1}{n}$ seem to approach a single point as n increases.

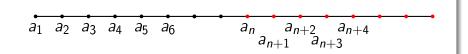
The elements of the sequence $\dot{-}$ seem to approach a single point as n increases. In these sequence the values are either increasing or decreasing as n increases, but they eventually approach a single point.

The elements of the sequence $\frac{1}{n}$ seem to approach a single point as n increases. In these sequence the values are either increasing or decreasing as n increases, but they eventually approach a single point. Though the elements of the sequence $\frac{(-1)^n}{n}$ oscillate, they eventually approach the single point 0.

The elements of the sequence $\dot{-}$ seem to approach a single point as n increases. In these sequence the values are either increasing or decreasing as n increases, but they eventually approach a single point. Though the elements of the sequence $\frac{(-1)^n}{n}$ oscillate, they eventually approach the single point 0. The common feature of these sequences is that the terms of each sequence accumulate at only one point.

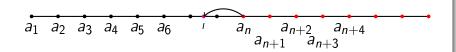
Convergence of a Sequence

We say that a sequence (x_n) converges if there exists $x_0 \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists a positive integer N (depending on ϵ) such that $x_n \in (x_0 - \epsilon, x_0 + \epsilon)$ for all n > N.



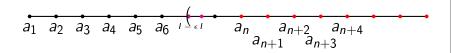
Definition

Let $\{a_n\}$ be a sequence of real numbers.



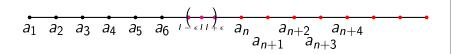
Definition

Let $\{a_n\}$ be a sequence of real numbers. $\{a_n\} \to I$



Definition

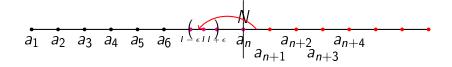
Let $\{a_n\}$ be a sequence of real numbers. $\{a_n\} \to I$ iff given $\epsilon > 0$

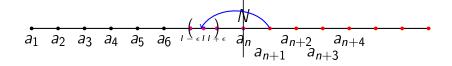


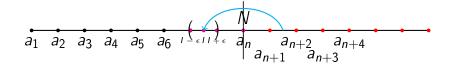
Let $\{a_n\}$ be a sequence of real numbers. $\{a_n\} \to I$ iff given $\epsilon > 0$

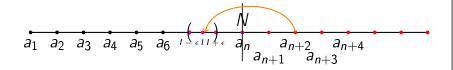
Let $\{a_n\}$ be a sequence of real numbers. $\{a_n\} \to I$ iff given $\epsilon > 0$ there exists a natural number N

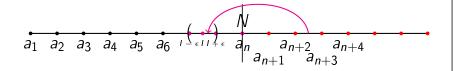


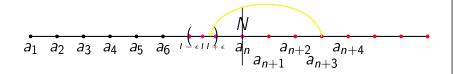




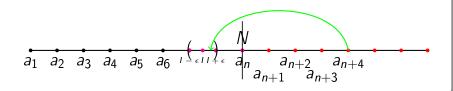


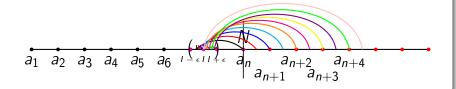


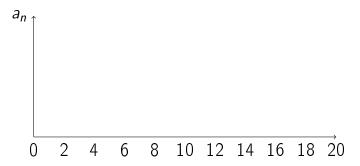


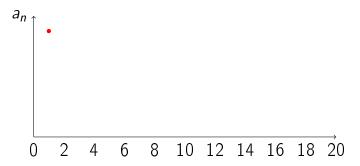


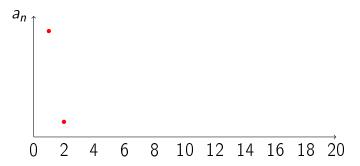


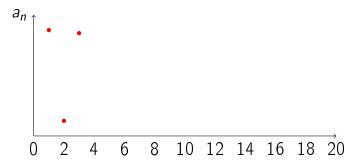


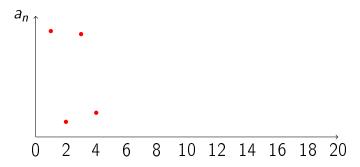


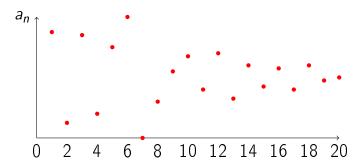


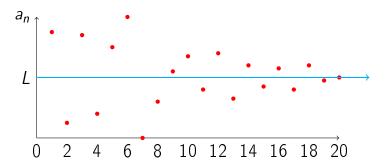


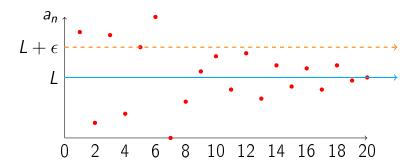


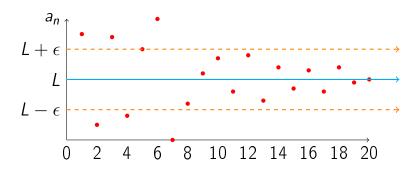


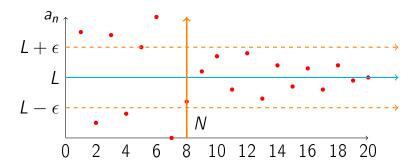


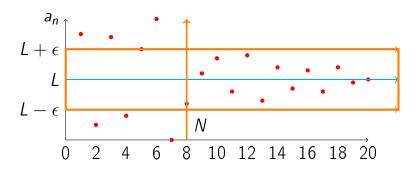


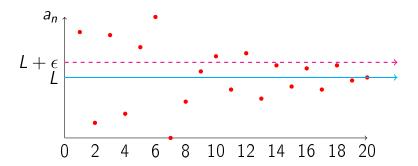


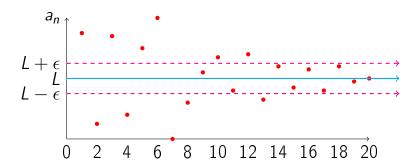


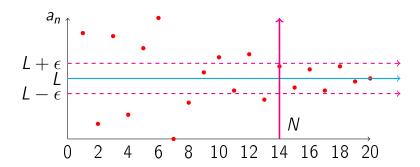


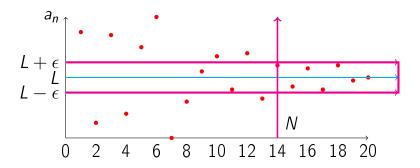


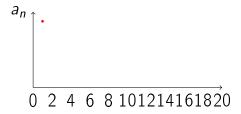


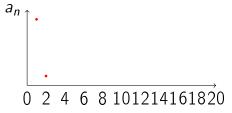


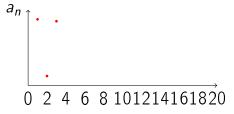


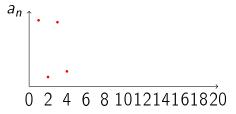


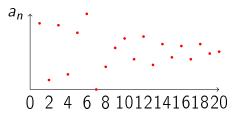


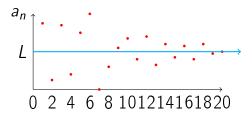


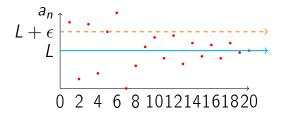




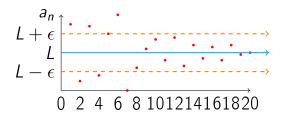




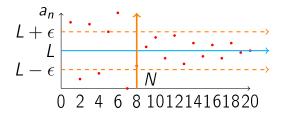




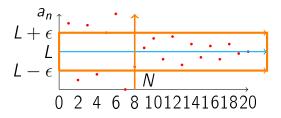
For any $\epsilon > 0$,

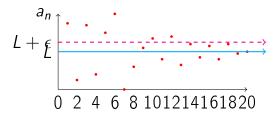


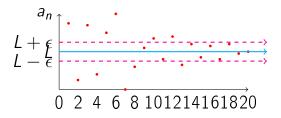
For any $\epsilon > 0$,

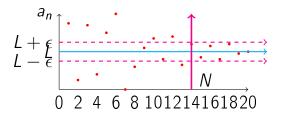


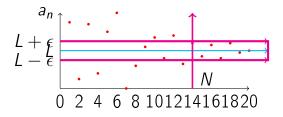
For any $\epsilon > 0$, \exists a positive integer N



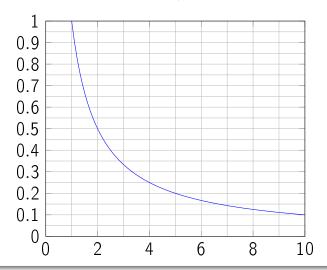




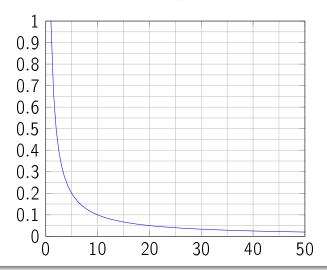




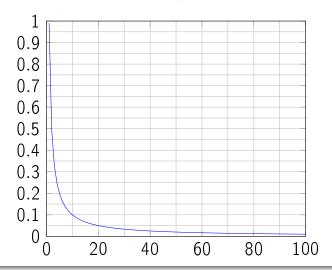
Convergence of the sequence 1/n

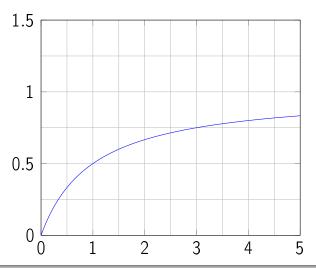


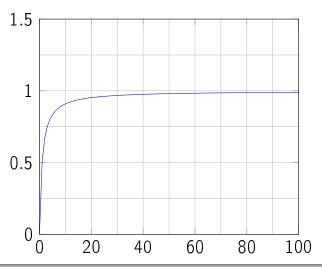
Convergence of the sequence 1/n

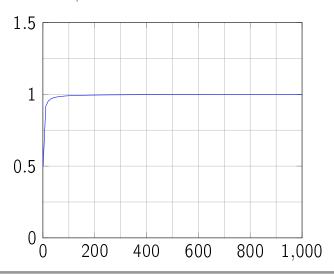


Convergence of the sequence 1/n

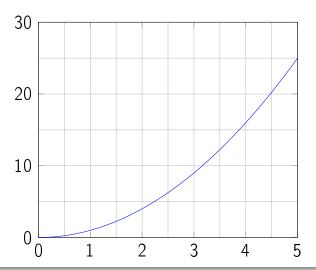




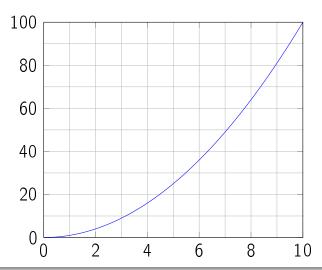




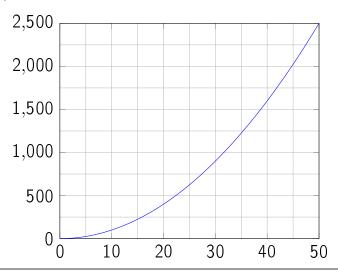
The sequence n^2



The sequence n^2



The sequence n^2



1. A sequence cannot converge to two different limits.

- 1. A sequence cannot converge to two different limits.
- 2. A sequence converges to real number A and B then A = B.

- 1. A sequence cannot converge to two different limits.
- 2. A sequence converges to real number A and B then A = B.
- 3. Any convergent sequence is a bounded sequence.

- 1. A sequence cannot converge to two different limits.
- 2. A sequence converges to real number A and B then A = B.
- 3. Any convergent sequence is a bounded sequence. Converse is not true.

- 1. A sequence cannot converge to two different limits.
- 2. A sequence converges to real number A and B then A=B.
- 3. Any convergent sequence is a bounded sequence. Converse is not true. Example : $\{(-1)^n\}$ is a bounded sequence but not a convergent sequence.

- 1. A sequence cannot converge to two different limits.
- 2. A sequence converges to real number A and B then A=B.
- 3. Any convergent sequence is a bounded sequence. Converse is not true. Example : $\{(-1)^n\}$ is a bounded sequence but not a convergent sequence.
- 4. Any convergent sequence is bounded.

Here are the names of some sequences which you may know already:

 $2, 4, 6, 8, 10, \cdots$ Even Numbers

$2, 4, 6, 8, 10, \cdots$	Even Numbers
$1, 3, 5, 7, 9, \cdots$	Odd numbers

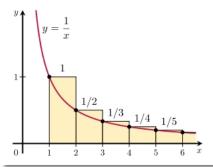
$2, 4, 6, 8, 10, \cdots$	Even Numbers
$1, 3, 5, 7, 9, \cdots$	Odd numbers
$3, 6, 9, 12, 15, \cdots$	Multiples of 3

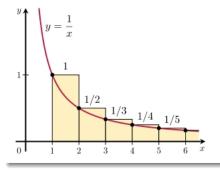
$2, 4, 6, 8, 10, \cdots$	Even Numbers
$1, 3, 5, 7, 9, \cdots$	Odd numbers
$3, 6, 9, 12, 15, \cdots$	Multiples of 3
5, 10, 15, 20, 25,	Multiples of 5

$2, 4, 6, 8, 10, \cdots$	Even Numbers
$1, 3, 5, 7, 9, \cdots$	Odd numbers
$3, 6, 9, 12, 15, \cdots$	Multiples of 3
$5, 10, 15, 20, 25, \cdots$	Multiples of 5
1, 4, 9, 16, 25,	Square numbers

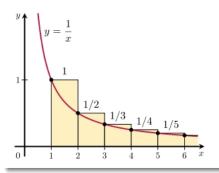
Bounded above

A sequence $\{a_n\}$ is said to be bounded above if there exists a real number k such that $a_n \leq k$ for all $n \in \mathbb{N}$. Then k is called the upper bound of the sequence $\{a_n\}$.





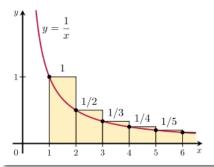
Range of the sequence is $\{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}\}$,

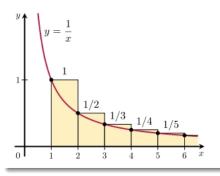


Range of the sequence is $\{1, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n}\}$, Upper bounds are $1, 2, 3, \cdots$

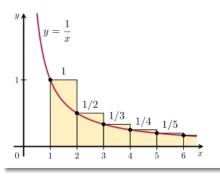
Bounded below

A sequence $\{a_n\}$ is said to be bounded below if there exists a real number k such that $a_n \ge k$ for all $n \in \mathbb{N}$. Then k is called the lower bound of the sequence $\{a_n\}$.





Range of the sequence is $\{1, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n}\}$,



Range of the sequence is $\{1, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n}\}$, Lower bounds are $0, -1, -2, \cdots, -n$

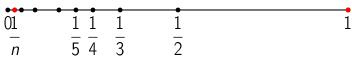
Bounded Sequence

A sequence $\{a_n\}$ is said to be bounded sequence if it has both bounded above and bounded below.

Bounded Sequence

A sequence $\{a_n\}$ is said to be bounded sequence if it has both bounded above and bounded below.

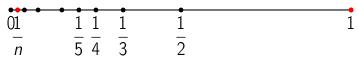
Example



Bounded Sequence

A sequence $\{a_n\}$ is said to be bounded sequence if it has both bounded above and bounded below.

Example



This sequence has both upper and lower bound so it is bounded sequence.

* Consider the sequence $1, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n}$.

** Consider the sequence $1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}$. Here 1 is the lub and 0 is glb.

Consider the sequence $1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}$. Here 1 is the lub and 0 is glb. It is bounded sequence.

- Consider the sequence $1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}$. Here 1 is the lub and 0 is glb. It is bounded sequence.
- * The sequence $1, 2, 3, \dots, n, \dots$ is

- Consider the sequence $1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}$. Here 1 is the lub and 0 is glb. It is bounded sequence.
- * The sequence $1, 2, 3, \dots, n, \dots$ is bounded below

- Consider the sequence $1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}$. Here 1 is the lub and 0 is glb. It is bounded sequence.
- * The sequence $1, 2, 3, \dots, n, \dots$ is bounded below but not bounded above.

- Consider the sequence $1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}$. Here 1 is the lub and 0 is glb. It is bounded sequence.
- * The sequence $1, 2, 3, \dots, n, \dots$ is bounded below but not bounded above. 1 is the glb of the sequence.

***** The sequence $-1, -2, -3, \cdots, -n, \cdots$ is

* The sequence $-1, -2, -3, \dots, -n, \dots$ is bounded above

* The sequence $-1, -2, -3, \cdots, -n, \cdots$ is bounded above but not bounded below

* The sequence $-1, -2, -3, \cdots, -n, \cdots$ is bounded above but not bounded below. -1 is the lub of the sequence.

* The sequence $-1, -2, -3, \cdots, -n, \cdots$ is bounded above but not bounded below. -1 is the lub of the sequence.

* 1, -1, 1, -1, \cdots , 1, -1, \cdots is

- The sequence $-1, -2, -3, \cdots, -n, \cdots$ is bounded above but not bounded below. -1 is the lub of the sequence.
- * $1,-1,1,-1,\cdots,1,-1,\cdots$ is bounded sequence.

- The sequence $-1, -2, -3, \cdots, -n, \cdots$ is bounded above but not bounded below. -1 is the lub of the sequence.
- 3 1, -1, 1, -1, \cdots , 1, -1, \cdots is bounded sequence. 1 is lub and -1 is the glb of the sequence.

- The sequence $-1, -2, -3, \cdots, -n, \cdots$ is bounded above but not bounded below. -1 is the lub of the sequence.
- * 1, -1, 1, -1, \cdots , 1, -1, \cdots is bounded sequence. 1 is lub and -1 is the glb of the sequence.
- Any constant sequence is bounded sequence.

A sequence $\{a_n\}$ is said to be monotonic increasing if $a_n \leq a_{n+1}$ for all n.

A sequence $\{a_n\}$ is said to be monotonic increasing if $a_n \le a_{n+1}$ for all n. A sequence $\{a_n\}$ is said to be strictly monotonic increasing if $a_n < a_{n+1}$ for all n.

A sequence $\{a_n\}$ is said to be monotonic increasing if $a_n \leq a_{n+1}$ for all n. A sequence $\{a_n\}$ is said to be strictly monotonic increasing if $a_n < a_{n+1}$ for all n.

Example

• $1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, \dots$ is a monotonic increasing sequence.

A sequence $\{a_n\}$ is said to be monotonic increasing if $a_n \le a_{n+1}$ for all n. A sequence $\{a_n\}$ is said to be strictly monotonic increasing if $a_n < a_{n+1}$ for all n.

Example

- 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, ... is a monotonic increasing sequence.
- $1, 2, 3, 4, 5 \cdots$ is a strictly monotonic increasing sequence.

A sequence $\{a_n\}$ is said to be monotonic decreasing if $a_n \ge a_{n+1}$ for all n.

A sequence $\{a_n\}$ is said to be monotonic decreasing if $a_n \ge a_{n+1}$ for all n. A sequence $\{a_n\}$ is said to be strictly monotonic decreasing if $a_n > a_{n+1}$ for all n.

A sequence $\{a_n\}$ is said to be monotonic decreasing if $a_n \geq a_{n+1}$ for all n. A sequence $\{a_n\}$ is said to be strictly monotonic decreasing if $a_n > a_{n+1}$ for all n.

Example

• $1, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n}$ is a strictly monotonic decreasing sequence.

A sequence $\{a_n\}$ is said to be monotonic decreasing if $a_n \geq a_{n+1}$ for all n. A sequence $\{a_n\}$ is said to be strictly monotonic decreasing if $a_n > a_{n+1}$ for all n.

Example

- $1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}$ is a strictly monotonic decreasing sequence.
- $-1, -1, -2, -2, -3, -3, -4, -4, \cdots$ is a strictly monotonic decreasing sequence.

The sequence $\{a_n\}$ given by $1, -1, 1, -1, \cdots$ is neither increasing nor decreasing.

The sequence $\{a_n\}$ given by $1, -1, 1, -1, \cdots$ is neither increasing nor decreasing. Hence $\{a_n\}$ is not a monotonic sequence.

The sequence $\{a_n\}$ given by $1, -1, 1, -1, \cdots$ is neither increasing nor decreasing. Hence $\{a_n\}$ is not a monotonic sequence.

Note

A monotonic increasing sequence $\{a_n\}$ is bounded below and a_1 is the glb of the sequence.

The sequence $\{a_n\}$ given by $1, -1, 1, -1, \cdots$ is neither increasing nor decreasing. Hence $\{a_n\}$ is not a monotonic sequence.

Note

A monotonic increasing sequence $\{a_n\}$ is bounded below and a_1 is the glb of the sequence. A monotonic decreasing sequence $\{a_n\}$ is bounded above and a_1 is the lub of the sequence.

Thank You